Credit Risk Classification Using Kernel Logistic Regression-least Square Support Vector Machine

نویسندگان

  • S. P. Rahayu
  • A. Embong
چکیده

Kernel Logistic Regression (KLR) is one of the statistical models that have been proposed for classification in the machine learning and data mining communities, and also one of the effective methodologies in the kernel-machine techniques. The parameters of KLR model are usually fitted by the solution of a convex optimization problem that can be found using the well known Iteratively Reweighted Least Squares (IRLS) algorithm. In this research, we use the Least Squares Support Vector Machine (LS-SVM) framework to solve the KLR problem. Recently, KLR has become very popular because it allows non-linear probabilistic classification which provides competitive discriminative ability and transparent reasoning to classify, also can be generalized to multi-class problem. Credit risk data sets from UCI machine learning are used in order to verify the effectiveness of the KLR-IRLSSVM method to evaluate credit risk in bank in a reasonable way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit Scoring Models with AUC Maximization Based on Weighted SVM

Credit scoring models are very important tools for financial institutions to make credit granting decisions. In the last few decades, many quantitative methods have been used for the development of credit scoring models with focus on maximizing classification accuracy. This paper proposes the credit scoring models with the area under receiver operating characteristics curve (AUC) maximization b...

متن کامل

Bayesian kernel based classification for financial distress detection

Corporate credit granting is a key commercial activity of financial institutions nowadays. A critical first step in the credit granting process usually involves a careful financial analysis of the creditworthiness of the potential client. Wrong decisions result either in foregoing valuable clients or, more severely, in substantial capital losses if the client subsequently defaults. It is thus o...

متن کامل

Data mining with Support Vector Machine

Machine Learning is considered as a subfield of Artificial Intelligence and it is concerned with the development of techniques and methods which enable the computer to learn. In this paper introduce SVM. It is techniques and methodologies developed for machine learning tasks Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. S...

متن کامل

Support Vector Machines for Credit Scoring

Quantitative methods to assess the creditworthiness of the loan applicants are vital for the profitability and the transparency of the lending business. With the total loan volumes typical for traditional financial institutions, even the slightest improvement in credit scoring models can translate into substantial additional profit. Yet for the regulatory reasons and due to the potential model ...

متن کامل

Least-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture

This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013